MDEP�User Guide

� VERZEICHNIS \o "1-3" �1 INTRODUCTION	� GEHEZU _Toc323571108 � SEITENREF _Toc323571108 �2��

2 QUICK START	� GEHEZU _Toc323571109 � SEITENREF _Toc323571109 �3��

3 THE MAKEFILE FORMAT	� GEHEZU _Toc323571110 � SEITENREF _Toc323571110 �4��

3.1 General format of the makefile	� GEHEZU _Toc323571111 � SEITENREF _Toc323571111 �4��

3.2 Sections in the information block	� GEHEZU _Toc323571112 � SEITENREF _Toc323571112 �4��

3.3 MDEP Options	� GEHEZU _Toc323571113 � SEITENREF _Toc323571113 �5��

4 MDEP REFERENCE: MDEP DIRECTIVES	� GEHEZU _Toc323571114 � SEITENREF _Toc323571114 �6��

4.1 ### MDEP_START	� GEHEZU _Toc323571115 � SEITENREF _Toc323571115 �6��

4.2 ### MDEP_END	� GEHEZU _Toc323571116 � SEITENREF _Toc323571116 �6��

4.3 ### MDEP_CUT	� GEHEZU _Toc323571117 � SEITENREF _Toc323571117 �6��

4.4 ### MDEP_MACROS	� GEHEZU _Toc323571118 � SEITENREF _Toc323571118 �6��

4.5 ### MDEP_OBJECTS	� GEHEZU _Toc323571119 � SEITENREF _Toc323571119 �7��

4.6 ### MDEP_OPTION	� GEHEZU _Toc323571120 � SEITENREF _Toc323571120 �9��

4.7 ### MDEP_OPTION_ELSE	� GEHEZU _Toc323571121 � SEITENREF _Toc323571121 �10��

4.8 ### MDEP_OPTION_END	� GEHEZU _Toc323571122 � SEITENREF _Toc323571122 �10��

5 MDEP REFERENCE: SECTIONS IN THE INFORMATION BLOCK	� GEHEZU _Toc323571123 � SEITENREF _Toc323571123 �11��

5.1 [MODULES]	� GEHEZU _Toc323571124 � SEITENREF _Toc323571124 �11��

5.2 [INCLUDE]	� GEHEZU _Toc323571125 � SEITENREF _Toc323571125 �11��

5.3 [STANDARDINC]	� GEHEZU _Toc323571126 � SEITENREF _Toc323571126 �12��

5.4 [SOURCE]	� GEHEZU _Toc323571127 � SEITENREF _Toc323571127 �12��

5.5 [OBJECT]	� GEHEZU _Toc323571128 � SEITENREF _Toc323571128 �13��

5.6 [DEFINE]	� GEHEZU _Toc323571129 � SEITENREF _Toc323571129 �13��

5.7 [CC]	� GEHEZU _Toc323571130 � SEITENREF _Toc323571130 �13��

5.8 [ASM]	� GEHEZU _Toc323571131 � SEITENREF _Toc323571131 �15��

6 MDEP REFERENCE: COMMAND LINE SYNTAX	� GEHEZU _Toc323571132 � SEITENREF _Toc323571132 �16��

7 MDEP TIPS	� GEHEZU _Toc323571133 � SEITENREF _Toc323571133 �17��

7.1 Using the OBJECTS macro	� GEHEZU _Toc323571134 � SEITENREF _Toc323571134 �17��

7.2 Using the INCn macros	� GEHEZU _Toc323571135 � SEITENREF _Toc323571135 �17��

8 ADDITIONAL INFORMATION	� GEHEZU _Toc323571136 � SEITENREF _Toc323571136 �18��

8.1 How MDEP scans files	� GEHEZU _Toc323571137 � SEITENREF _Toc323571137 �18��

8.2 Scanning for nested include files	� GEHEZU _Toc323571138 � SEITENREF _Toc323571138 �18��

8.3 The GETALL list	� GEHEZU _Toc323571139 � SEITENREF _Toc323571139 �18��

8.4 Scanning assembler files	� GEHEZU _Toc323571140 � SEITENREF _Toc323571140 �18��

9 LICENCE INFORMATION	� GEHEZU _Toc323571141 � SEITENREF _Toc323571141 �20��

10 CONTACTING THE AUTHOR	� GEHEZU _Toc323571142 � SEITENREF _Toc323571142 �21��

�Introduction

What is MDEP?

MDEP is a program which automatically generates the dependecy lists in a makefile. It is intended for use on projects using C, C++ or Assembler. MDEP is particularly useful on projects which are not developed using an integrated development environment (IDE).

Unlike other similar programs, MDEP does not assume that all of the source and header files are in a single directory. MDEP will search a specified list of directorys, not only for header files, but also for source files.

MDEP does not generate the whole makefile, but only the dependency lists and optionally the compiler commands for C and ASM modules.

MDEP is ‘driven’ by an information block at the top of the makefile in which you specify the filenames, the directorys to be searched for source files and for header files and, optionally, the rules for compiling C files and assembling ASM files.

MDEP assumes that all include directives in C source files specify the filename and extension, but not the file path. The actual include file will be found by searching a series of one or more include directories.

What development environment does MDEP support?

The current version of MDEP runs as a DOS program or as a text-mode Windows (QuickWin) program.

The makefiles generated by MDEP have so far principally been used with Microsoft NMAKE, but may also work with other MAKE programs.

MDEP is not designed to support any specific target environment, but it is probably most useful if you are using a PC as your development environment, but not as your target environment.

Quick start

The following annotated example is a good basis for generating your own makefile and for getting a feel for what MDEP does.

MDEP_START�#�Start of MDEP information block��#[MODULES]�#aaa.c�#bbb.c�#ccc.c�#�List of source files��#[INCLUDE]�#c:\project\inc�#h:\standard\inc�#�#�#�List of directories containing project specific include files. Include files which are found in one of these directories will be added to the dependency list.��#[STANDARDINC]�#h:\compiler\include�#h:\sdk\include�#�#�#�#�List of directories containing compiler or operating system specific include files. Include files which are found in one of these directories will NOT be added to the dependency list and will NOT be scanned for nested include files.��#[SOURCE]�#c:\project\src�#h:\standard\src�#�List of directories containing source files.��#[OBJECT]�#c:\project\obj�#�Directory in which object files will be placed.��#[CC]�# cl @<<�#/Fo$@ /G2 /Gs /f- /c /AL /DDOS�#/I$(INC0)�#/I$(INC1)�#/I$(INC2)�#/I$(INC3)�#%s�#<<NOKEEP�#�#�Compiler command.

$(INC0), $(INC1) etc. refer to the include directories defined above.

%s will be replaced by the source filename with it’s full path when the command is generated by MDEP.��### MDEP_MACROS�OBJECTS = \�c:\project\obj\aaa.obj \�c:\project\obj\bbb.obj \�c:\project\obj\bbb.obj�INC0 = c:\project\inc�INC1 = h:\standard\inc�INC2 = h:\compiler\include�INC3 = h:\sdk\include�#�MDEP generates the macros $(OBJECTS) and $(INC0), $(INC1) etc. between the directive ###MDEP_MACROS and the next comment line.

(Cursive text generated by MDEP).��### MDEP_END��End of MDEP information block.��$(OBJ)\target.exe: $(OBJECTS)

 link @<<�/B +�$(OBJECTS: = +^�)�$@�$*.MAP�llibce;�<<NOKEEP

�Linker command.

Note that NMAKE allows substitution within macros. This is used with the $(OBJECTS) macro to exchange <space><space> for +<new line>.��### MDEP_CUT�End of user generated makefile. MDEP will delete all of the file following this directive and generate the new dependency lists and compiler commands.��The MAKEFILE format

The central part of a makefile which can be used with MDEP is the information block. This is written as comment lines (starting with #) at the top of the makefile.

General format of the makefile

The makefile is split into sections using the following directives:�###MDEP_START�###MDEP_END�###MDEP_CUT

The directives ###MDEP_START and ###MDEP_END are used to mark the start and end of the MDEP information block.

The directive ###MDEP_CUT is used to mark the end of the part of the makefile which has been created by hand. Following this directive, all lines in the file will be discarded by MDEP and replaced by the automatically generated dependency lists.

The general format of a makefile, using the above directives is as follows:

<File header>��### MDEP_START�<MDEP information block>�### MDEP_END��<other MAKE statements, e.g. Linker commands>��### MDEP_CUT��<automatically generated dependency lists>

Sections in the information block

The information block is split into sections with lines in the following format:

#[<section name>]

e.g.

#[MODULES]

Each section contains specific information for MDEP, as summarised below:

Section�Contents��MODULES�All C, C++ or ASM source modules are listed in this section. The modules are listed with the filename and extension only. The Directory must not be listed.��INCLUDE�All project specific include directories are listed in this section.��STANDARDINC�All non project specific include directories are listed in this section. This might include operating system and compiler specific directories.��SOURCE�All source directories are listed in this section.��OBJECT�The object directory is specified in this section.��CC�The compiler command line or lines are specified in this section.��ASM�The assembler command line or lines are specified in this section.��MDEP Options

MDEP options provide a means to define conditional subblocks within the MDEP information block using the following directives:�###MDEP_OPTION�###MDEP_OPTION_ELSE�###MDEP_OPTION_END

These directives may be used anywhere within the MDEP information block.

An option may be specified on the command line in the format /O:<option>.

It is only possible to specify one option on the command line. Options cannot be nested.

Possible use of MDEP options

Supposing you have a large project with frozen versions of all source modules in a project archive. If you are going to edit one or two files, you may copy these to a separate development directory.

Using MDEP options, you could define one version of the makefile which takes all source files from the project archive and a second version which takes source files from the development directory or from the project archive.

For example:

###MDEP_OPTION:LOCAL�#�#[SOURCE]�#C:\PROJECT\SRC�#H:\PROJECT\SRC�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�###MDEP_OPTION_ELSE�#�#[SOURCE]�#H:\PROJECT\SRC�#�#[INCLUDE]�#H:\PROJECT\INC�#�###MDEP_OPTION_END�#

Supposing you require some different source modules for a test version of your program.

Using MDEP options, you could provide two versions of the module list.

For example:

#[MODULES]�#aaa.c�#bbb.c�###MDEP_OPTION:TEST�#test.c�###MDEP_OPTION_END

MDEP Reference: MDEP Directives

MDEP_START

Description:�The directive ###MDEP_START indicates the start of the MDEP information block.��Scope:�###MDEP_START should be the first MDEP directive in the makefile.��Example:�See section 2��### MDEP_END

Description:�The directive ###MDEP_END marks the end of the MDEP information block.��Scope:�###MDEP_END should be placed after the directive ###MDEP_START and after all of the individual sections in the MDEP information block.��Example:�See section 2��### MDEP_CUT

Description:�The directive ###MDEP_CUT marks the end of all user defined text in the makefile. All text following this directive will be deleted and regenerated by MDEP.��Scope:�###MDEP_CUT must be the last line of the user generated part of the makefile.��Example:�See section 2��### MDEP_MACROS

Description:�The directive ###MDEP_MACROS instructs MDEP to generate the following macros:

OBJECTS

This macro specifies a complete list of all object files, based on the list of modules specified in the [MODULES] section. Each file is given the file extension .obj and prefixed with the path specified in the [OBJECT] section.

INC0, INC1, ...

These macros are defined to refer to the include directories specified in the [INCLUDE] and [STANDARDINC] sections.

If these macros are used in the compiler and/or assembler commands specified in the [CC] and [ASM] sections, then you can change the specific directories listed in the [INCLUDE] and [STANDARDINC] sections, without having to modify the compiler and/or assembler commands.

In the original makefile, the line containing ###MDEP_MACROS must be followed by another comment line (starting with #). This may be another MDEP directive, such as ###MDEP_END.

When MDEP is run for the first time using this makefile, it will insert the macros directly following the line with ###MDEP_MACROS and thus before the comment line which follows it.

When MDEP is run again, it will delete the lines between the line containing ###MDEP_MACROS and the next comment line, before insering new macros.��Scope:�###MDEP_MACROS may be placed anywhere in the makefile following the [INC], [STANDARDINC], [MODULES] and [OBJECT] sections in the MDEP information block.

It may appear within the information block (before ###MDEP_END) or following it.

A good position is directly before the ###MDEP_END directive.��Example:�In the following example, type in this style indicates text which is entered by the user and type in this style indicates text which is generated by MDEP.

###MDEP_START�#�#[MODULES]�#module_a.c�#module_b.c�#module_c.c�#module_d.c�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�#[STANDARDINC]�#M:\OS\INC�#M:\CC\INC�#�#[OBJECT]�#C:\PROJECT\OBJ�#�###MDEP_MACROS�OBJECTS = \�C:\PROJECT\OBJ\module_a.obj \�C:\PROJECT\OBJ\module_b.obj \�C:\PROJECT\OBJ\module_c.obj \�C:\PROJECT\OBJ\module_d.obj�INC0 = C:\PROJECT\INC�INC1 = H:\PROJECT\INC�INC2 = M:\OS\INC�INC3 = M:\CC\INC�###MDEP_END��...��###MDEP_CUT

��Example:

MDEP_OBJECTS

Description:�The directive ###MDEP_OBJECTS instructs MDEP to generate a list of all of the object files, with one file per line.

The exact format of each line is specified following the directive, separated by a single space. The object file is indicated with the character sequence %s (see example).

In the original makefile, the line containing ###MDEP_OBJECTS must be followed by another comment line (starting with #).

When MDEP is run for the first time using this makefile, it will insert the list of object files directly following the line with ###MDEP_OBJECTS and thus before the comment line which follows it.

When MDEP is run again, it will delete the lines between the line containing ###MDEP_OBJECTS and the next comment line, before generating a new list of object files.

This directive provides one way of generating a list of object files as part of the linker command. However, it will only work if the linker treats lines which start with # as a comment. (One example is Watcom wlink).

Note:	It is normally better to use the OBJECTS macro instead of the the ###MDEP_OBJECTS directive.��Scope:�###MDEP_OBJECTS may be placed anywhere in the makefile following the [INC], [STANDARDINC], [MODULES] and [OBJECT] sections in the MDEP information block.��Example:�In the following example, type in this style indicates text which is entered by the user and type in this style indicates text which is generated by MDEP.

###MDEP_START�#�#[MODULES]�#module_a.c�#module_b.c�#module_c.c�#module_d.c�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�#[STANDARDINC]�#M:\OS\INC�#M:\CC\INC�#�#[OBJECT]�#C:\PROJECT\OBJ�#�###MDEP_END��###MDEP_OBJECTS file %s�file C:\PROJECT\OBJ\module_a.obj�file C:\PROJECT\OBJ\module_b.obj�file C:\PROJECT\OBJ\module_c.obj�file C:\PROJECT\OBJ\module_d.obj�#��...��###MDEP_CUT

��### MDEP_OPTION

Description:�The directive ###MDEP_OPTION introduces a series of optional lines within the MDEP information block and specifies an option name. The optional lines continue until the next ###MDEP_OPTION, ###MDEP_OPTION_ELSE or ###MDEP_OPTION_END directive.

The option name follows the directive, separated by a colon, with the format:�###MDEP_OPTION:<option name>

The optional lines will only be analysed by MDEP if the same option name was specified on the MDEP command line in the format /O:<option name>.

Note that only one option may be specified on the command line and that optional blocks may not be nested. Multiple ###MDEP_OPTION directives may be used to create a CASE construction.��Scope:�###MDEP_OPTION may only be used within the MDEP information block.��Example:�###MDEP_START�#�#[MODULES]�#module_a.c�#module_b.c�#module_c.c�#module_d.c�#�###MDEP_OPTION:LOCAL�#�#[SOURCE]�#C:\PROJECT\SRC�#H:\PROJECT\SRC�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�###MDEP_OPTION_ELSE�#�#[SOURCE]�#H:\PROJECT\SRC�#�#[INCLUDE]�#H:\PROJECT\INC�#�###MDEP_OPTION_END�#�#[STANDARDINC]�#M:\OS\INC�#M:\CC\INC�#�#[OBJECT]�#C:\PROJECT\OBJ�#�###MDEP_END��...��###MDEP_CUT

If MDEP is called with the parameter /O:LOCAL then source and include files will first be searched for in the local directory tree C:\PROJECT. Files which are not found will be searched for in the nework directory tree H:\PROJECT.

If this parameter is not used, then the local directorys will not be searched. All sources will be taken from the network drive H.��### MDEP_OPTION_ELSE

Description:�The directive ###MDEP_OPTION_ELSE follows an optional block introduced with ###MDEP_OPTION and introduces a default block. This default block will be analysed if the optional block directly preceding it was not analysed.��Scope:�###MDEP_OPTION_ELSE may only be used within the MDEP information block, following an optional block introduced with ###MDEP_OPTION.��Example:�See ###MDEP_OPTION.��### MDEP_OPTION_END

Description:�The directive ###MDEP_OPTION_END terminates an optional block introduced with ###MDEP_OPTION or a default block introduced with ###MDEP_OPTION_ELSE.��Scope:�###MDEP_OPTION_END may only be used within the MDEP information block, following an optional or default block introduced with ###MDEP_OPTION or ###MDEP_OPTION_ELSE.��Example:�See ###MDEP_OPTION.��MDEP Reference: Sections in the information block

The MDEP information block is split into sections by lines containing a keyword in square brackets, eg. [MODULES].

Each of these sections contains a list of one or more items. Each item is listed on a separate line.

All lines in the MDEP information block start with a single # character, except for lines containing MDEP directives which start with ###.

Spaces and tabs are generally ignored, except within the [CC] and [ASM] sections.

[MODULES]

Description:�The MODULES section contains a list of source modules used by the makefile. Only the filename and extension is listed. The directory must not be listed.

Note: The directory is listed in the SOURCE section.��Example:�###MDEP_START�#�#[MODULES]�#module_a.c�#module_b.c�#module_c.c�#module_d.c�#�#[SOURCE]�#C:\PROJECT\SRC�#�# ...�#�###MDEP_END��...��###MDEP_CUT�� [INCLUDE]

Description:�The INCLUDE section contains a list of directories to be searched for include files. The directorys will be searched in the order specified.

If the ###MDEP_MACROS directive is used, then MDEP will generate a macro (INC0, INC1,...) for each include path. It is recommened that the macros be used in the compiler command, instead of specifying the include directory directly. This makes it easier to modify the list of include directories.��Example:�###MDEP_START�#�# ...�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�# ...�#�###MDEP_END��...��###MDEP_CUT��[STANDARDINC]

Description:�The section STANDARDINC contains an additional list of directories to be searched for include files. MDEP searches in these directories after it has searched the direcories listed in the INCLUDE section.

It is intended that directories containing standard (i.e. not project specific) include files be listed in this section.

Include files which are found in one of the ‘stardard’ include directories are:

not searched recursivly for further include files,

not added to the dependency list and

not added to the GETALL list at the end of the makefile.

If the ###MDEP_MACROS directive is used, then MDEP will generate a macro (INC0, INC1,...) for each include path. It is recommened that the macros be used in the compiler command, instead of specifying the include directory directly. This makes it easier to modify the list of include directories.��Example:�###MDEP_START�#�# ...�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�#[STANDARDINC]�#M:\OS\INC�#M:\CC\INC�#�# ...�#�###MDEP_END��...��###MDEP_CUT�� [SOURCE]

Description:�The section SOURCE contains a list of all directories to be searched for the source files specified in the MODULES section.��Example:�###MDEP_START�#�#[MODULES]�#module_a.c�#module_b.c�#module_c.c�#module_d.c�#�#[SOURCE]�#C:\PROJECT\SRC�#H:\PROJECT\SRC�#�# ...�#�###MDEP_END��...��###MDEP_CUT�� [OBJECT]

Description:�The section OBJECT specifies a single directory to be used for all object files.

MDEP uses this directory to generate the object filenames, used in the OBJECTS macro and in the list created by the ###MDEP_OBJECTS directive. For MDEP this is simply a text string.

You may find it useful to define a macro for the object directory, so that you can use the same directory for the linker output file. In this case, you can specify the macro name, e.g. $(OBJ) in the OBJECTS section.��Example:�Example 1:

###MDEP_START�#�# ...�#�#[OBJECT]�#C:\PROJECT\OBJ�#�# ...�#�###MDEP_END��...��###MDEP_CUT

Example 2:

OBJ = C:\PROJECT\OBJ��###MDEP_START�#�# ...�#�#[OBJECT]�#$(OBJ)�#�# ...�#�###MDEP_END��...��###MDEP_CUT�� [DEFINE]

Description:�This section is obsolete.�� [CC]

Description:�The CC section is used to specify the exact command with which the C or C++ compiler should be called. The source filename should be specified with the character sequence %s.

MDEP will insert this command following each dependency list and replace the %s with the appropriate source filename (including path).

Although the same effect can be achieved using inference rules in the makefile, these are often difficult to understand and to debug. By specifying the compiler command after each dependency list, the behaviour on the make program is well defined and easy to predict.

The compiler command may extend over many lines. Spaces and tabs will be copied exactly as specified. Only the # at the start of the line will be removed. The command must be indented by a space or a tab (UNIX versions may require a tab) so that MAKE can distinguish it from the next dependency list.��Example:�In the following example, type in this style indicates text which is entered by the user and type in this style indicates text which is generated by MDEP.

###MDEP_START�#�#[MODULES]�#module_a.c�#module_b.c�#module_c.c�#module_d.c�#�#[SOURCE]�#C:\PROJECT\SRC�#H:\PROJECT\SRC�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�#[STANDARDINC]�#M:\OS\INC�#C:\C700\INC�#�#[OBJECT]�#C:\PROJECT\OBJ�#�#[CC]�# cl @<<�#/Fo$@ /G2 /Gs /f- /c /AL /DDOS�#/I$(INC0)�#/I$(INC1)�#/I$(INC2)�#/I$(INC3)�#%s�#<<NOKEEP�#�###MDEP_MACROS�OBJECTS = \�C:\PROJECT\OBJ\module_a.obj \�C:\PROJECT\OBJ\module_b.obj \�C:\PROJECT\OBJ\module_c.obj \�C:\PROJECT\OBJ\module_d.obj�INC0 = C:\PROJECT\INC�INC1 = H:\PROJECT\INC�INC2 = M:\OS\INC�INC3 = C:\C700\INC�###MDEP_END��...��###MDEP_CUT��...��C:\PROJECT\OBJ\module_a.obj: C:\PROJECT\SRC\module_a.c \� <include files> ...� cl @<<�/Fo$@ /G2 /Gs /f- /c /AL /DDOS�/I$(INC0)�/I$(INC1)�/I$(INC2)�/I$(INC3)�C:\PROJECT\SRC\module_a.c�<<NOKEEP��... �� [ASM]

Description:�The ASM section is used to specify the command with which the Assembler should be called.

This section is analogous to the CC section, except that is is used only for those modules which have the extension .asm.��Example:�###MDEP_START�#�#[MODULES]�#module_a.asm�#module_b.asm�#module_c.asm�#module_d.asm�#�#[SOURCE]�#C:\PROJECT\SRC�#H:\PROJECT\SRC�#�#[INCLUDE]�#C:\PROJECT\INC�#H:\PROJECT\INC�#�#[STANDARDINC]�#M:\OS\INC�#�#[OBJECT]�#C:\PROJECT\OBJ�#�#[ASM]�# masm /I$(INC0) /I$(INC1) /I$(INC2) %s,$@,$*.lst;�#�###MDEP_MACROS�###MDEP_END��...��###MDEP_CUT��...����MDEP Reference: command line syntax

The MDEP command line usually has the format:

MDEP <makefile>

where <makefile> indicates the name of the makefile. If the name of the makefile is omitted, then MDEP will prompt for it.

The command line may also contain optional switches, before or after the makefile name.

Optional command line switches

/O:<option name>

This switch indicates the name of an option, to be used with the directive ###MDEP_OPTION.

Only one option may be specified on the command line.

/R

Print registration information and exit without processing a makefile.

MDEP Tips

Using the OBJECTS macro

If you are using Microsoft NMAKE, then it is often useful to use the OBJECTS macro in conjunction with the NMAKE’s ablity to substitute text within macros. This is invoked with the syntax:

$(macroname:string1=string2)

Every occurance of string1 is replaced with string2.

If string2 contains a newline character, then a list of object files can be generated in which each file is on a separate line. A literal newline character is specified by preceding the actual newline character with a circumflex (^).

Consider the following example:

OBJECTS = \�C:\PROJECT\OBJ\module_a.obj \�C:\PROJECT\OBJ\module_b.obj \�C:\PROJECT\OBJ\module_c.obj \�C:\PROJECT\OBJ\module_d.obj��file $(OBJECTS: =^�file)

When the macro is expanded, the result is as follows:

file C:\PROJECT\OBJ\module_a.obj�file C:\PROJECT\OBJ\module_b.obj�file C:\PROJECT\OBJ\module_c.obj�file C:\PROJECT\OBJ\module_d.obj

During the macro expansion, the string “<space><space>“ was replaced with the string “<newline>file “. It is necessary to specify two spaces for string1, because NMAKE interprets the newline in the macro definition as a space.

This construction is extremely useful in generating a linker command.

Using the INCn macros

The correct functioning of MDEP assumes that the include directories specified in the INCLUDE and STANDARDINC sections correspond exactly to the include directories specified to the compiler (and/or assembler). It is also critical, that the order in which the directories are searched is identical, in case a given include file is present in more than one of the directories.

It is usually necessary to specify the include directories in the compiler command (unless all necessary files are in a single directory).

It is most convenient, if the macros INC0, INC1 etc. are used in the compiler command in place of the actual include directory names. In this case, the actual include directories may be changed, without modifying the compiler command. It is, of course, necessary to run MDEP, to regenerate the macros and to scan the include files in the new directories.

Additional information

How MDEP scans files

In the current version of MDEP, rigour has been sacrificed for speed. In particular you should note:

MDEP reads a maximum of 32 Kbytes from the file and scans only this part of the file. This is based on the assumption that all include directives are close to the start of the file.

MDEP does not analyse the C preprocesor directives for conditional compilation (#if, #ifdef etc.).

MDEP does not take any notice of comments.

If there are #include directives in conditional branches which are not compiled, or if you have commented some #include directives out, MDEP will nevertheless read these directives and search for the include files.

If MDEP fails to find an include file, it issues an error message. If the #include directive for that include file was in a part of the source file which will not be compiled, then the error message may be ignored.

Scanning for nested include files

MDEP will scan include files for nested include files, if the include file is found in one of the directories specified in the [INCLUDE] section.

If the include file is found in one of the directories specified in the [STANDARDINC] section, then it will not be scanned for nested include files. (It will also not be included in the dependency list).

The GETALL list

At the end of the makefile, MDEP adds the target GETALL, followed by a of COPY commands for each of the source and include files.

This list does not include include files found in the ‘standardinc’ directories.

Scanning assembler files

MDEP will locate include directives in assembler files in one of the following formats:

$INCLUDE (filename)�(Intel ASM86, ASM386)��INCLUDE filename�(Microsoft MASM, Borland TASM)��In both cases, the keyword include may be lower or upper case.

Problems with Intel ASM86 and ASM386

The Intel assemblers, e.g. ASM386, present a special problem, in that they do not provide a command line option to specify an include directory. It is therefore often necessary to specify a path with the filename.

MDEP will strip the path off the filename and search for the include file in the include directorys specified in the information block.

The Intel tools will accept a logical pathname in the form :name:. Under DOS, :name: must be defined as an environment variable.

One approach would be to use the logical names :I0:, :I1:, etc. in include directives, e.g.�$include (:I1:xxx.inc)�and to set these equal to the include paths in makefile, as in the following example:

#�#[ASM]�# SET :I0:=$(INC0)�# SET :I1:=$(INC1)�# SET :I2:=$(INC2)�# SET :I3:=$(INC3)�# -1 ASM386 & < <<asm.cmd�#%s &�#oj($@) &�#PR($(LST)\$(@B).LST)�#<<KEEP�# GREP WARNING $(LST)\$(@B).LST�#

This method is, however, very inflexible, since ASM386 will only look for an include file in the specified directory, instead of searching them all in the given order.

Licence information

MDEP is shareware. You may use it free of charge for an evaluation period of 20 days. If you continue to use MDEP following this period you must register it.

When you register it, you will receive a copy of the registration file MDEP.REG, which you must copy into same directory as MDEP.EXE. This file will be sent be E-Mail only.

The registration fee for MDEP is $35.00 or DM 50.00.

You may register by one of the following methods:

CompuServe Shareware Registration

GO SWREG�Registration ID 5603

This is the favoured method of payment for non Europeans. The fee of $35.00 will be charged to your CompuServe account.

Eurocheque

Send a Eurocheque for DM 50.00 to

Phil Jollans�Andreasstrasse 19�82515 Wolfratshausen�Germany

Bank transfer

German users may register with a bank transfer of DM 50.00 to

Phil Jollans�Dresdner Bank, Munich�Konto	920151800�BLZ	70080000

Write your E-Mail address on the bank transfer form.�

Contacting the Author

MDEP was written by Phil Jollans.

You can contact me

by E-Mail

CompuServe 100275,2756

by Fax

+49.8171.16717

by Mail

Andreasstrasse 19�82515 Wolfratshausen�Germany

I am very interested in your comments on MDEP. Feel free to suggest improvements!

MDEP Version 1.07	USER GUIDE	26.4.95

�SEITE �

�SEITE �20�/� ANZSEITEN * FORMATVERBINDEN �21�

